$\mathbb{IIII}2023$ COSTEM

Collaborative Retrospective Analysis of Haploidentical Hematopoietic Stem Cell Transplantation Outcomes in Hematologic Malignancies: Insights from the Argentine Group of Bone Marrow Transplantation and Cellular Therapy (GATMO-TC)

Bentolila Gonzalo¹, Basquiera Ana², Berro Mariano³, Rodríguez Daiana⁴, De Jesús García Mercedes², Castro Martín⁵, Vitriu Adriana⁶, Duarte Patricio⁷, Cerutti Amalia⁸, Martínez Rolon Juliana¹.

¹ Fundación contra la Leucemia (FUNDALEU), Ciudad Autónoma de Buenos Aires, Argentina; ² Hospital Privado de Córdoba, Córdoba, Argentina; ³ Hospital Universitario Austral, Pilar, Provincia De Buenos Aires, Argentina; ⁴ Hospital Italiano de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; ⁵ Sanatorio Anchorena, Ciudad Autónoma de Buenos Aires, Argentina; ⁶ Instituto Alexander Fleming (IAF), Ciudad Autónoma de Buenos Aires, Argentina; ⁷ Centro de Educación Médica e Investigaciones Clínicas (CEMIC), Ciudad Autónoma de Buenos Aires, Argentina; ⁸ Sanatorio Británico, Rosario Provincia de Santa Fe, Argentina.

Abstract

Haploidentical hematopoietic stem cell transplantation (Haplo-HSCT) has emerged as very important therapeutic option for malignant hematologic disorders. In Argentina the median time to an unrelated donor is about 5-7 months, and only 30% of the patients manage to transplant in the last evaluation¹.

This study, conducted in collaboration with the Argentine Group of Bone Marrow Transplantation and Cellular Therapy (GATMO-TC), aims to evaluate overall survival (OS), progression-free survival (PFS), graft-versus-host disease-free, relapse-free survival (GRFS), transplant-related mortality (TRM), and incidence of graft-versus-host disease (GVHD) in allogeneic Haplo-HSCT for acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), and myelodysplastic syndrome (MDS).

A retrospective analysis was conducted on 287 patients who underwent Haplo-HSCT with post-transplant cyclophosphamide from 2014 to 2022 across eight institutions within the Argentine Group of Bone Marrow Transplantation and Cellular Therapy (GATMO-TC).

Statistical analysis included Kaplan-Meier survival and Grey's test for commutative incidence.

Results

The analysis included 287 patients with a median age of 42 years (range: 16-77); 56% were male. Diagnoses included AML (50%), ALL (37%), and MDS (12%).

Among these patients, 75% received a myeloablative busulfan-based conditioning regimen, with 75% of the stem cells sourced from peripheral blood. Pre-transplant status showed 78% of AML and 63% of ALL patients in complete remission, while 63% of MDS patients had stable disease with <10% blasts. Median follow-up was 27.7 months.

T + 1		Donors						
lotal patients	287		Median age	(r) 34 (13-72)		Source		Others
Median of age (r)	42 (15-77)		incular age					5%
> 60 Years (%)	53 (17)		<45 years (%	5) 222 (71)	P	Peripheral	7.40/	J70
> 00 Tears (70) 55 (17)		Sex N (%)			Blood 74%			
Sex	N (%)			202 (65)	-	Dioou		TRI
Male	174 (56)		Male	202 (65)	Bo	ne Marrow	11%	IDI
Famala	126 (44)		Female	108 (35)			4-64	34%
Female 136 (44)			Polat	ive N (%)		mix	15%	
Disease (%)		Neiat		_			BU	
AML	157 (51)		Father	14 (5)				
ΔΠ	116 (37)		Mother	23 (7)				55%
MDS	37 (12)		Brother	106 (34)		Intensity		
Risk HCT-CI/ (%)	37 (12)	Sister	65 (21)		DAAC		Mal	
	<3 / (84)		Son	70 (25)		75%	BIC 25%	IVIEI
	>3/(16)		500	79 (25)				6%
Risk DRI /(%)	Intermediate 39%		daughter	20 (6)				
	High 58%		Cousin	3 (1)				

Two-year OS and PFS were 51.5% and 44.3%, respectively. Multivariate analysis revealed HCT-CI, donor age, and conditioning intensity impacting OS and Disease Risk Index (DRI) influencing

PFS. TRM at 3, 12, and 24 months was 13%, 22%, and 25%, with relapse rates of 6%, 24%, and 31%; infections were the leading cause of death. GRFS at 2 years was 38.1%. Incidence of acute GVHD II-IV was 40% and 46% at day 100 and 365, with III-IV GVHD at 0.7% and 5%. Chronic GVHD rates were 3.3% and 13% at 6 and 24 months.

310	215	153	123	106

310	214	151	121	104		

Number at risk				
310	235	190	153	
0.0	200	100	100	

Number at	risk	meses pos-t	rasplante		
310	204	146	112	95	

Conclusion

This collaborative study with GATMO-TC demonstrates that Haplo-HSCT is a well-established therapeutic option with acceptable rates of OS, PFS, GRFS, TRM, and GVHD incidence. Further analysis is needed to understand the impact of infections as a major cause of mortality. These findings contribute to the consolidation of Haplo-HSCT as a valuable treatment modality for hematologic malignancies

References

1- Basquiera A. HEMATOLOGÍA Volumen 18 nº 3: 217-225. 2014

Contact

gbentolila@fundaleu.org.ar www.costemlive.cme-congresses.com